

Journal of Power Sources 105 (2002) 75-81

www.elsevier.com/locate/jpowsour

Synthesis and characterization of metastable Li–Mn–O spinels from Mn(V)

W.P. Kilroy*, S. Dallek, J. Zaykoski

Naval Surface Warfare Center, Carderock Division, 9500 MacArthur Blvd., West Bethesda, MD 20817, USA Received 9 August 2001; accepted 2 October 2001

Abstract

 $Li_3MnO_4 Mn(V)$ was synthesized from LiOH and LiMnO₄, and characterized by gravimetric, X-ray, and XPS analysis. This precursor was used to improve the calcination time required for the low temperature solid state synthesis of highly oxidized spinels, $Li_2Mn_4O_{8+x}$. TG calculations were used to show the effect of calcination conditions on phase purity. The effect of a second phase on cycling performance was evaluated. Published by Elsevier Science B.V.

Keywords: Lithium; Rechargeable battery; Manganese (V); Spinel; Thermogravimetry

1. Introduction

Lithium manganese oxides have been examined as a cathode material for rechargeable lithium batteries because they are inexpensive, environmentally benign, and provide good energy density. Preparation of the commercial $LiMn_2O_4$ requires several days of calcination at temperatures >750 °C. Our work has focused on a new, faster, solid state approach of synthesizing defect spinels in a reproducible manner with the goal of eventually producing novel composite metal oxides.

The stoichiometric spinel, $LiMn_2O_4$, used as a cathode in commercial rechargeable batteries, exhibits capacity fading during cycling, especially in the 3 V range. This has been attributed to a Jahn–Teller distortion when lithium insertion induces a cubic to tetragonal phase transition associated with a decrease in the average oxidation state of Mn below +3.5. Recent studies have suggested that the capacity fade may not be attributable to Jahn–Teller distortion [1].

A variety of strategies have been evaluated to suppress the onset of the Jahn–Teller distortion associated with the LiMn₂O₄ cathode. Small fluctuations in the stoichiometry of LiMn₂O₄ via partial substitution of a metal such as Li for Mn in Li_{1+x}Mn_{2-x}O₄, can increase the valence of Mn. Similarly an increase in the oxygen content of LiMn₂O_{4+x} would give rise to the meta-stable defect spinel Li₂Mn₄O₉ when x = 0.5. It is impossible to synthesize an overly

oxidized LiMn₂O₄, i.e. LiMn₂O_{4+ δ} (Li₂Mn₄O_{8+x}), and still maintain its original cation distribution. Upon oxidation, the average oxidation state of Mn will increase in proportion to the oxygen nonstoichiometry, x. Thus, x, and hence the valence of Mn, plays a significant role in determining both the electronic properties of the crystal structure and the electrochemical performance.

To our knowledge, there has been no attempt to combine both strategies, i.e. the low temperature preparation of a highly oxidized form of a substituted metal, M, composite Mn (>+3.5) oxide such as $Li_2MMn_3O_{8.0+x}$ where 0 < x < 1. We undertook this effort by first investigating the formation of the fully oxidized form of $Li_2Mn_4O_{8+x}$, namely the cation defect structure Li2Mn4O9, more correctly described as Li_{0.89} $\square_{0.11}$ [Mn_{1.78} $\square_{0.22}$]O₄. Preparation of this material, synthesized by a solid-state reaction between lithium and manganese salts, is far from trivial and is time consuming. The fully oxidized material has never been realized. The required calcination temperature is also sufficient to partially decompose the Li₂Mn₄O₉ into LiMn₂O₄. After careful re-examination of many solid state processes to prepare single-phase Li₂Mn₄O₉, either the selected precursors or the calcination time or temperature reported often gave rise to phase separation of MnO₂ or Mn₂O₃. We previously reported the effect of using a precursor having a high oxidation state of Mn, i.e. LiMnO₄, to successfully prepare single-phase metastable spinel [2]. To evaluate the effect of oxidation state on the formation of $Li_2Mn_4O_{8+x}$, we investigated another highly oxidized precursor, namely Li₃MnO₄.

^{*} Corresponding author. Tel.: +1-301-227-1881; fax: +1-301-227-4580. *E-mail address*: kilroywp@nswccd.navy.mil (W.P. Kilroy).

2. Experimental

 Li_3MnO_4 was prepared by slowly heating a 2:1 stoichiometric ratio of an intimately ground mixture of LiOH·H₂O and LiMnO₄·3H₂O in a tube furnace under flowing oxygen using intermittent grinding at about 125 °C. Heating was continued at 170 °C for several hours.

 $LiMnO_4$ was prepared by passing an aqueous solution of $KMnO_4$ through a Dowex lithiated cation exchange resin. The $LiMnO_4$ was dried at ambient temperature in a dry room at 1% humidity.

The extent of hydration of both precursors was predetermined to be LiOH·0.984H₂O and LiMnO₄·2.91H₂O using a TA Instruments, Inc. 951 thermogravimetric analyzer.

The spinel was prepared in a tube furnace by calcination of an intimately ground mixture of a 1:5 stoichiometric ratio of Li_3MnO_4 and MnOOH (Chemetals). The synthesis was studied over a temperature range from 400 to 550 °C under oxygen gas.

Powder X-ray diffraction was used to determine the purity of the precursors and the phase purity of the spinels. The extent of oxidation of the spinel was determined by TG weight loss measurements under helium.

The oxidation state of the Li_3MnO_4 was determined by XPS measurements using a Physical Electronics 5400 spectrometer with a monochromatic aluminum X-ray source operating at 400 W and a photoelectron take-off angle of 45°. The samples were pressed in indium foil, spectra collected for the C 1s, Mn 2p, and O 1s regions, and the Mn $2p_{3/2}$ binding energies were corrected versus the C 1s reference of 285.0 eV.

Cathodes, containing a slurry of 70% active material, 20% super P carbon, 10% PVDF binder in PC, were sprayed as a thin film onto a stainless steel current collector. The film was vacuum oven-dried at 220 °C. Lithium was pressed onto a Ni exmet grid and the electrodes, separated by two plies of 3401 celgard, were bound between glass plates. The electrolyte was 1 M LiPF₆ in a 1:1 mixture of ethylene carbonate and ethylmethyl carbonate (EC:EMC). Finished cells were heatsealed in laminated Al-mylar-polyethylene bag and cycled at a 0.05 mA/cm² discharge rate at ambient temperature.

3. Discussion

Binary metal oxides often show nonstoichiometry because transition metals such as Mn are stable in different oxidation states. This nonstoichiometry can greatly influence the electrochemical performance of spinel cathodes. The spinel phase is temperature dependent, i.e. a composition rich in Mn^{+4} forms preferentially at low temperatures. As the temperature is raised above about 400 °C, the percentage of Mn^{+3} increases, eventually forming the stoichiometric LiMn₂O₄ with an average Mn valence of +3.5. The choice of starting materials is important to obtain pure highly oxidized lithium manganospinels at low temperature.

As previously reported, many precursor mixtures [3] give rise to second phases or require very long calcination times [4]. The calcination time and temperature are dependent on the precursors. We have found that spinels reported to be prepared in a few hours, generally contained a second phase. Others have reported poorly oxidized spinels, even after 3 days of calcination [5]. This is especially true with low oxidation state Mn precursors such as MnCO₃. Higher oxidation state Mn precursors, such as LiMnO₄ and Li₃MnO₄, allow reactions to be completed in a shorter time.

4. Synthesis and characterization of Li₃MnO₄

4.1. Furnace synthesis

Li₃MnO₄ was prepared by intermittently grinding gram size mixtures of precursors in a tube furnace under flowing oxygen. At 125 °C, a gradual change in color from violet to deep blue to sky blue was observed. If heated overnight, without intermittent grinding, the sky blue product still contains unreacted LiOH (20.5 peak:32.5 shoulder), LiMnO₄ (13:31.2; 35.0 peaks) and an unidentified lithiated Mn oxide peak at 21.0 as shown by the X-ray spectra in Fig. 1a. The weight loss was 90% of theoretical; confirming additional calcination was required. Weight loss was 100% of theoretical after calcining in the tube furnace at 160–170 °C for about 4 h with intermittent grindings, as illustrated by the Xray spectra of the blue-green Li₃MnO₄ in Fig. 1b.

4.2. TG synthesis

We attempted to study the reaction mechanism by heating the reactants slowly under oxygen in a TG instrument. The reaction initially proceeds through dehydration of the precursors as shown in Fig. 2. The weight loss is in excellent agreement with the expected loss of water of hydration from the pre-analyzed mixture of LiMnO₄·2.91H₂O and 2LiOH·0.984H₂O, (66.21% measured versus 66.40% calculated). This was followed by the highly exothermic decomposition of the LiMnO₄ that occurs near 150 °C. After isothermal heating at 170 °C, the observed weight loss was only 58.8% compared to the theoretical 53.4 wt%. loss expected. This disparity illustrates the notable difference between heating a 5 g mixture in a furnace and heating 5 mg in a TG instrument. The dehydration process and very exothermic reaction disrupts the compactness of the small mg-size mixture, creating an inhomogeneous mixture that is not completely reacted in the TG instrument. Mixture homogeneity is achieved in the furnace through intermittent grinding.

4.3. Li_3MnO_4 characterization

The thermal decomposition behavior of the Li_3MnO_4 is shown in Fig. 3. The Li_3MnO_4 , heated at 20 °C/min under nitrogen, begins to slowly decompose beyond 200 °C, and

Fig. 1. X-ray spectra of Li₃MnO₄ prepared at 125 °C (curve a) and at 170 °C (curve b).LiOH★; LiMnO₄☆.

accelerates near 400 °C. X-ray analysis of a sample heated briefly at 350 °C in a furnace, even under O_2 , confirms formation of some Li₂MnO₃. Similarly when Li₃MnO₄ is washed with methyl alcohol, X-ray analysis shows partial

decomposition into Li_2MnO_3 with corresponding DTG data showing a larger peak at 363 °C. X-ray analysis of the product heated as high as 800 °C confirms the final product is Li_2MnO_3 . The observed residual weight of 94.30% is in

Fig. 2. Weight loss vs. calcination time for the reaction of LiOH·H₂O and LiMnO₄·3H₂O under oxygen gas at 2 °C/min in a TG instrument.

Fig. 3. TG curve for the thermal decomposition of Li₃MnO₄ heated at 20 °C/min under nitrogen gas.

good agreement with the calculated value of 94.28% according to the reaction

$$2\operatorname{Li}_{3}\operatorname{MnO}_{4} \rightarrow 2\operatorname{Li}_{2}\operatorname{MnO}_{3} + \operatorname{Li}_{2}\operatorname{O} + \frac{1}{2}\operatorname{O}_{2}$$
(1)

The oxidation state of the green-blue material heated extensively at 130 °C and the blue-green material calcined 4 h at 170 °C was determined to be +5 from XPS studies. This implies that the Li₃MnO₄ prepared at 130 °C may approach that of a single-phase material with sufficient calcining and grinding. Fig. 4 compares the binding energy of Li₃MnO₄ with MnO₂ and KMnO₄ standards and previously reported XPS reference data.

5. Synthesis and analysis of the spinel

We examined the effects of calcination time and temperature on the reaction of Li_3MnO_4 with a variety of Mn precursors. If the temperature is too low, a high degree of oxidation may not be achieved, even after days of heating, because of slow reaction kinetics. At higher temperatures, the reverse (decomposition) reaction will compete with formation of the spinel. This critical temperature dependence was investigated by TG analysis.

"Li₂Mn₄O₉" was prepared by reaction of Li₃MnO₄ with MnOOH under oxygen in a tube furnace, according to the reaction

$$2 \operatorname{Li}_{3} \operatorname{MnO}_{4} + 10 \operatorname{MnOOH} + 2 \operatorname{O}_{2} \rightarrow 3 \operatorname{Li}_{2} \operatorname{Mn}_{4} \operatorname{O}_{9} + 5 \operatorname{H}_{2} \operatorname{O}$$
(2)

The extent of the oxidation of the "Li₂Mn₄O₉" spinel, i.e. the resulting Li₂Mn₄O_{8+x} was analyzed by X-ray and TG analysis. The Li₂Mn₄O_{8+x} undergoes a two-step thermal decomposition with loss of oxygen when heated under inert gas near 400 °C according to the reaction

$$\operatorname{Li}_{2}\operatorname{Mn}_{4}\operatorname{O}_{8+x} \to \operatorname{Li}\operatorname{Mn}_{2}\operatorname{O}_{4} + \frac{x-8}{2}\operatorname{O}_{2}$$
(3)

At higher temperatures, further reaction occurs according to the reaction

$$3 \operatorname{LiMn}_2 O_4 \rightarrow 3 \operatorname{LiMn}_2 + \operatorname{Mn}_3 O_4 + O_2 \tag{4}$$

The oxygen content of the spinel was determined by comparing the ratio of successive TG weight plateaus with the theoretical TG weight plateaus. This is illustrated by the TG curve of a commercial LiMn_2O_4 sample shown in Fig. 5a. The weight plateau ratio (94.10/100) for the LiMn_2O_4 sample is in exact agreement with the theoretical value of 0.9410 calculated from the gravimetric factors of the ratio of the molecular weights of the solid phases as shown in Eq. (4).

The TG curve of an oxidized spinel, $Li_2Mn_4O_{8+x}$, prepared by calcination at 460 °C for 6 h, is shown in Fig. 5b. The first weight loss, from room temperature to about 100 °C, is due to the evolution of adsorbed and combined water. The second weight loss, beginning near 400 °C, is attributed to the decomposition of $Li_2Mn_4O_{8+x}$ into $LiMn_2O_4$. The third weight loss, from 600 to 800 °C, is decomposition of $LiMn_2O_4$. This final weight loss was used as a corroborative measurement for the TG method. The

Fig. 4. X-ray photoelectron spectra of binding energy for Li₃MnO₄ measured vs. MnO₂ and KMnO₄ standards and relative to literature reference materials.

Fig. 5. TG study of spinels heated at 20 °C/min under nitrogen gas. (a) Commercial LiMn₂O₄; weight loss ratio = 0.9410; (b) Oxidized single phase spinel, Li₂Mn₄O_{8,55}; weight loss ratio = 0.9410; (c) Two-phase material; spinel weight loss ratio = 0.9432.

(91.57/97.31) experimental ratio of 0.9410 is in exact agreement with the theoretical (510.445/542.444) product/reactant ratio of the molecular weights of the solid phases in Eq. (4). This agreement is indicative of a pure spinel of composition $Li_2Mn_4O_{8.55}$ that has decomposed on the first plateau into pure $LiMn_2O_4$. Any deviation of TG plateau values from the theoretical value of 0.9410 can be attributed to a second phase, because a pure spinel of composition $Li_2Mn_4O_{8+x}$, should decompose according to Eqs. (3) and (4).

When a MnOOH and Li₃MnO₄ precursor mixture is calcined in the furnace for only 3 h at 435 °C under oxygen, X-ray data show the product is Li₂Mn₄O_{8+x} and a small amount of a second phase, MnO₂. The gravimetric factor of 0.9432, calculated from the TG decomposition curve, Fig. 5c, is not the 0.9410 value expected for a single-phase material. This leads to an incorrect value of the oxygen stoichiometry, *x*, in Li₂Mn₄O_x, calculated to be 8.72, from the solid phase ratio of Eq. (3) as follows

$$\frac{2 \operatorname{LiMn_2O_4}}{\operatorname{Li_2Mn_4O_x}} = \frac{2(180.81)}{2(6.941) + 4(54.938) + 15.999x} = \frac{96.45\%}{99.54\%}$$
(5)

The introduction of a second phase may occur because several Mn compounds decompose at temperatures near that of the oxidized spinel. $Li_2Mn_4O_{8+x}MnOOH$ presents a different problem. Both Li_3MnO_4 and MnOOH are oxidized by O_2 , and a competitive oxidation process occurs.

Oxidation of MnOOH can occur when MnOOH is calcined under O_2 for several hours at 390 °C, as indicated by the following equation:

$$2\operatorname{MnOOH} + \frac{1}{2}\operatorname{O}_2 \to 2\operatorname{MnO}_2 + \operatorname{H}_2\operatorname{O}$$
(6)

This is demonstrated by the TG data shown in Fig. 6. Initially there is uptake of some O_2 by MnOOH producing a small weight gain. The first weight loss corresponds to the loss of water from the oxidation reaction. The gravimetric factor, 98.76/100.1, or 0.987, is in agreement with the 0.988 value calculated from the (2 MnOOH/2 MnO₂) molecular weight ratio of the solid phases. Oxidation continues, until a second weight loss occurs, corresponding to the decomposition of MnO₂.

The appearance of a second phase is not only a function of the kinetics of competing reactions, as in the above case, but it is also a function of the subsequent reactivity of the MnO_2 produced. As the calcination temperature, and time increases from 435 °C for 3 h to 460 °C for 6 h, as demonstrated by the TG behavior of Fig. 5b and c, the MnO_2 concentration diminishes.

6. Electrochemistry

Capacity fading in the 4 V region, with good capacity retention over the 3 V range, has been attributed to a change in the surface particles in the 4 V range and oxidation of the Mn_2O_4 framework, when $LiMn_2O_4$ was cycled over the entire voltage range [1]. Capacity fading in the 4 V region was not observed when our two-phase material (Fig. 5c), comprised of the oxidized spinel and a small amount of

Fig. 6. TG behavior of MnOOH, when calcined at 20 $^{\circ}$ C/min in the presence of the purge gas, oxygen, illustrating the competitive oxidation that can occur when reacted with Li₃MnO₄ under oxygen.

Fig. 7. Discharge profiles of the two-phase material (Fig. 5c) cycled in a bag cell at a discharge rate of 0.05 mA/cm² and a charging rate of 0.025 mA/cm².

 MnO_2 , was cycled, as shown in Fig. 7. The initial capacity of 171 mAh/g is less than the >220 mAh/g capacity obtained with the single-phase spinel [2].A small increase in the 4 V capacity was observed after 40 cycles. The cell was stored for 2 days without cycling after the 10th cycle and for 1 day after the 20th and 30th cycle. There is a disproportionate drop-off in capacity between the 10th and 20th when compared with that of the 1st and 10th cycle. This loss of capacity after storage appears to be more attributable to dissolution of Mn^{+3} than to Jahn–Teller distortion.

Acknowledgements

The authors greatly appreciate the XPS study provided by Dr. Pat Hagans. The NSWC In-house Laboratory Independent Research (ILIR) Program provided funding support for this study.

References

- S. Kang, J.B. Goodenough, J. Electrochem. Soc. 147 (10) (2000) 3621.
- [2] W.P. Kilroy, W.A. Ferrando, S. Dallek, J. Power Sources 97/98 (2001) 336.
- [3] C. Masquelier, M. Tabuci, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, J. Goodenough, J. Solid State Chem. 123 (1996) 255.
- [4] M. Thackeray, M. Rossouw, A. de Kock, A. de la Harpe, R. Gummow, K. Pearce, D. Liles, J. Power Sources 43 (1993) 289.
- [5] S. Choi, A. Manthiram, J. Electrochem. Soc. 147 (2000) 1623.